中教数据库 > 山西大学学报(自然科学版) > 文章详情

基于CLSVSM的电影评分预测及其推荐应用研究

更新时间:2023-05-28

【摘要】随着电影网站用户数量以及电影数量的上升,用户评分数据变得极其稀疏,导致推荐系统推荐质量下降。针对这一问题,文章在传统基于项目的推荐算法(IBCF)基础上提出基于共现潜在语义向量空间模型(CLSVSM)的项目评分预测算法。文章先通过CLSVSM得到电影共现矩阵以及电影共现相对强度矩阵,然后利用电影之间的共现潜在关系对评分矩阵进行补全,在此基础上预测用户对未观看的电影评分,进而生成推荐。实验结果表明:与传统的IBCF推荐算法相比,CMLVSM_IBCF算法的均方根误差(RMSE)和平均绝对误差(MAE)分别下降17.7%和17.6%。新提出的算法计算出的电影之间的相似度更准确,有效地减小了数据稀疏性对推荐结果的影响,显著提高了电影网站的推荐质量。

【关键词】

340 2页 免费

发表评论

登录后发表评论 (已发布 0条)

点亮你的头像 秀出你的观点

0/500
以上留言仅代表用户个人观点,不代表中教立场
相关文献

推荐期刊

Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved

京ICP备2021021570号-13

京公网安备 11011102000866号